

Study of crack propagation by infrared thermography during very high cycle fatigue regime

N. RANC*, D. WAGNER**, L. ILLOUL*, PC. PARIS***, C. BATHIAS**

*Laboratoire PIMM, ENSAM-ParisTech, FRANCE

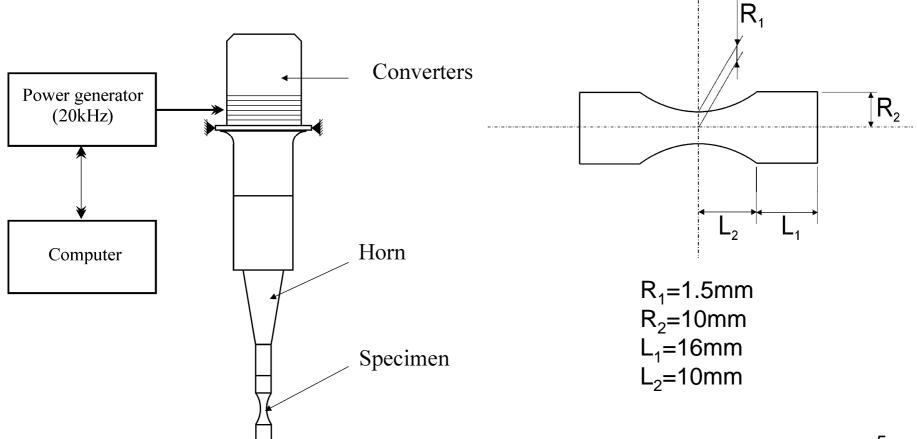
**LEEE, University of Paris X, FRANCE

***LAMEFIP, ENSAM-ParisTech, Bordeaux FRANCE

Introduction

- Many elements of mechanical structures can be loaded beyond 10⁷ cycles:
 - ⇒ Very high cycle fatigue regime (VHCF) or gigacycle fatigue regime
- Fracture mechanisms associated with the VHCF are different from those known in high cycle fatigue (HCF):
 - Fatigue failure can occur at values of cycle exceed 10⁷ cycles and for stress level below the conventional high cycle fatigue limit.
 - In high yield strength steels the fracture does not occur on the surface but rather internally in the materials: formation of a fish eye

Experimental study of the crack propagation in the VHCF regime


Experimental difficulties :

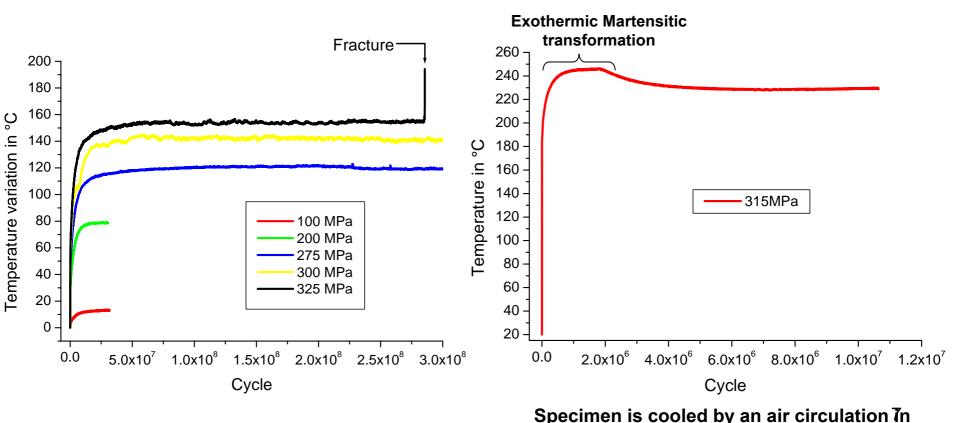
- High frequency: In gigacycle fatigue test is carried out at ultrasonic frequency (20kHz) one cycle: 50µs
- Test duration : 14 hours for 10⁹ cycles
- Internal crack initiation
- ⇒ Is it possible to use pyrometry to understand and to study the fatigue initiation in VHCF regime?
- Advantage of pyrometry technique:
 - Good spatial and time resolutions
 - It allows to obtain field measurements on the surface of the specimen
 - The dissipated power is higher than at low frequency
 - It allows to detect the thermal effects associated with an internal crack propagation (the fish eye formation, i.e. crack propagation, inside the material in the gigacycle fatigue regime is related to a local increase of the temperature due to plasticity on the crack tip.)

Experimental device : ultrasonic fatigue test with measurement of temperature fields

Experimental device : ultrasonic fatigue test

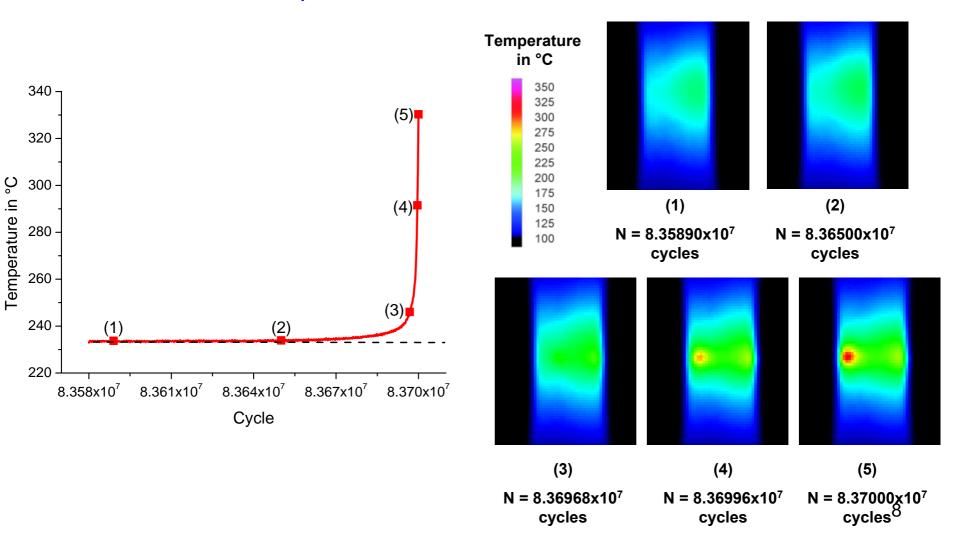
- Ultrasonic fatigue machine
- Geometry of the specimen

Experimental device : temperature field measurement


Experimental device: test with R=0.01

- Temperature measurement by infrared pyrometry:
 - MCT detector
 - Wavelength range : 3.7μm 4.9μm
 - Aperture time : 100μs-1500μs
 - Refresh time: 16ms 40ms
 - Spatial resolution : 0.12mm/pixel

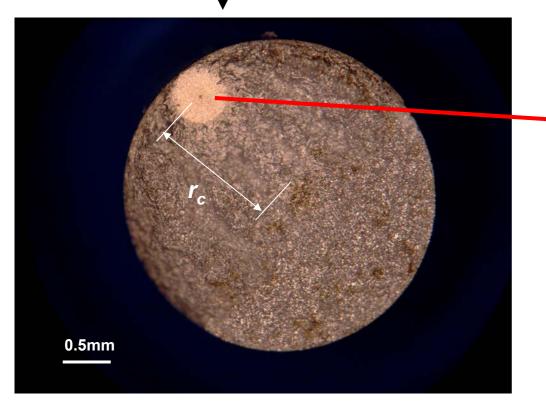
Temperature evolution during an ultrasonic fatigue test


- Case of a high-strength steel:
 (0.22% of C; 1.22% of Mn; 1% of Cr; 1% of Ni); UTS = 950MPa
- Case of another high-strength steel: (0.22% of C; Mn, Cr, Si: less than 1%); UTS ≈ 1700MPa

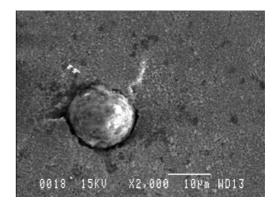
order to limit its heating

Temperature field just before the fracture

• R=-1; $\Delta \sigma$ =335MPa; N_F=8.37x10⁷ cycles (gigacycle domain)



Post mortem observation of the fracture surface


Optical microscopy

 Observation
 Adirection

Scanning electronic microscopy

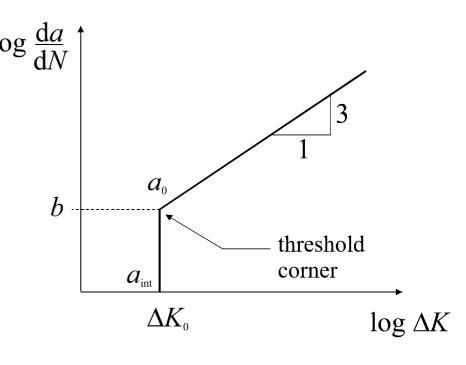
Propagation of a fish eye fatigue crack

Inclusion in the center of the fatigue crack:

⇒Average radius of the inclusion: a_{int} =7.6µm ⇒Eccentricity: e= r_c / R_1 =0.81

Thermal model of the crack propagation

The model of crack propagation 1


Paris-Hertzberg-McClintock crack growth rate law :

$$\frac{\mathrm{d}a}{\mathrm{d}N} = b \left(\frac{\Delta K_{eff}}{E\sqrt{b}}\right)^3$$

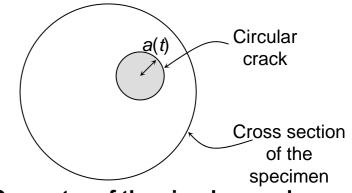
b norm of the Bürgers vector E Young modulus

On the threshold corner

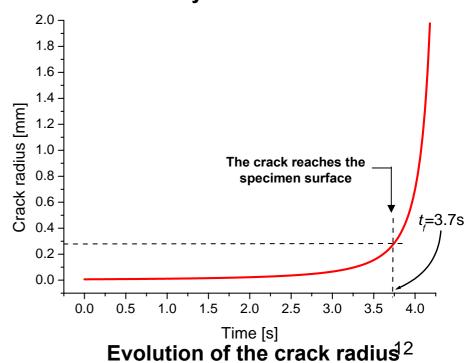
$$\frac{\mathrm{d}a}{\mathrm{d}N} = b$$
 and $\frac{\Delta K_0}{E\sqrt{b}} = 1$

The model of crack propagation 2

By supposing a circular crack and neglecting crack closure:


$$\Delta K_{eff} = \Delta K = \frac{2}{\pi} \Delta \sigma \sqrt{\pi a}$$

The crack growth rate law is thus written:


$$\frac{\mathrm{d}a}{\mathrm{d}N} = b \left(\frac{\Delta K}{\Delta K_0}\right)^3 = b \left(\frac{a}{a_0}\right)^{3/2}$$

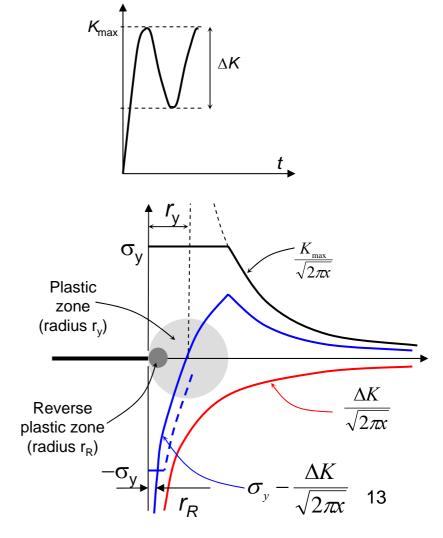
After integration between a_0 (t=0) and a (time t):

$$a(t) = \frac{a_0}{\left(1 - \frac{t}{t}\right)^2} \quad \text{with} \quad t_c = \frac{2a_0}{bf}$$

Geometry of the circular crack

 $(a_0=8\mu m; e=0.8; t_c=4.4s)$

Calculation of the dissipated energy during crack growth


• The reverse plastic zone size in plane strain:

$$r_{R} = \frac{r_{y}}{4} = \frac{1}{6\pi} \frac{\Delta K^{2}}{(2\sigma_{v})^{2}}$$

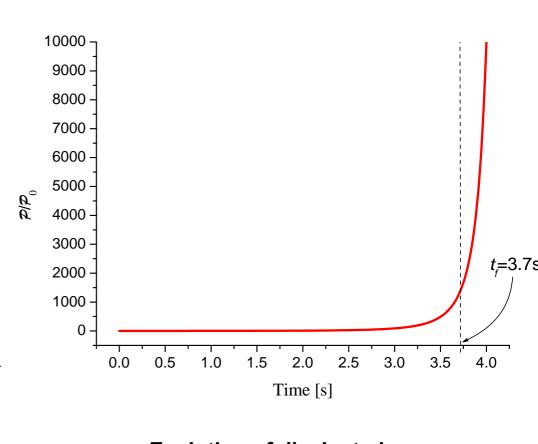
$$r_{R}$$
<0.13 μ m

 Energy dissipated per unit length of crack:

$$E = \eta r_R^2$$

Calculation of the dissipated energy during crack growth

Evolution of the dissipated energy versus time:


$$E = \eta r_R^2 = \eta \frac{\Delta K^4}{24^2 \pi^2 \sigma_v^4}$$

$$E = \eta \frac{a^{2}}{36\pi^{4}\sigma_{y}^{4}} = \eta \frac{a_{0}^{2}\Delta\sigma^{4}}{36\pi^{4}\sigma_{y}^{4}\left(1 - \frac{t}{t_{c}}\right)^{4}} \frac{a^{2}}{a^{2}}$$

Evolution of the dissipated power versus time:

$$P = Ef = \frac{P_0}{\left(1 - \frac{t}{t_c}\right)^4} \quad \text{with} \quad t_c = \frac{2a_0}{bf}$$

P₀ is a constant which is identified from experimental data

Evolution of dissipated power $(a_0=8\mu\text{m}; e=0.8; t_c=4.4\text{s})$

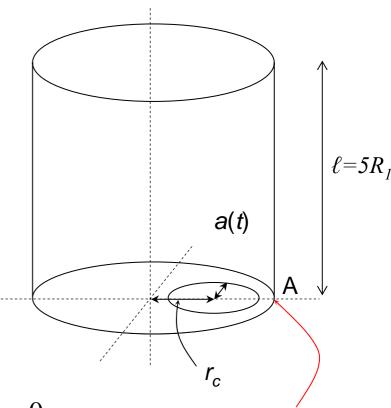
Modeling of the thermal problem

Thermal model assumptions:

- The specimen is modeled by a cylinder with a radius of R_1 =1.5mm
- For symmetry reasons, only one half of the specimen is consider
- $-r_R$ is very small (about 0.13µm): the fatigue crack is modeled by a dissipated power along the crack tip (P is the dissipated power per unit length)

Heat transfer equation

Heat transfer equation:


$$\rho C \frac{\partial T}{\partial t} = \frac{P(t)}{2} \delta(r_c - a(t)) \delta(z) + \lambda \Delta T$$

Initial condition

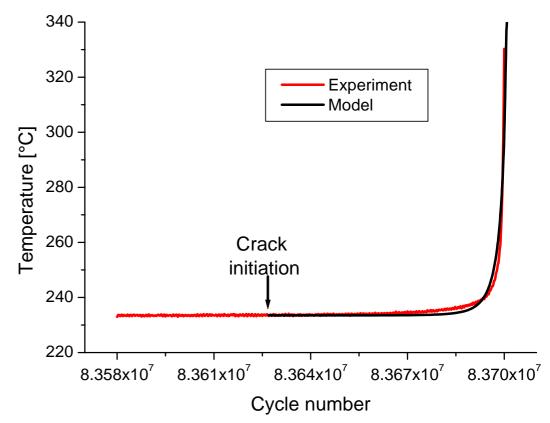
$$T(t=0) = T_0$$

 Boundary condition (adiabatic conditions)

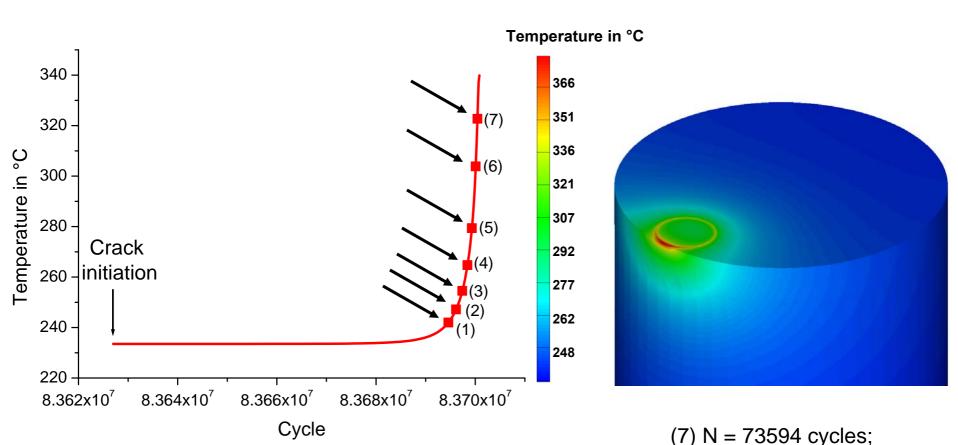
$$\frac{\partial T}{\partial r}(r=R_1) = 0 \frac{\partial T}{\partial z}(z=\ell) = 0 \frac{\partial T}{\partial z}(z=0) = 0$$

temperature

Numerical simulation of the temperature field 1

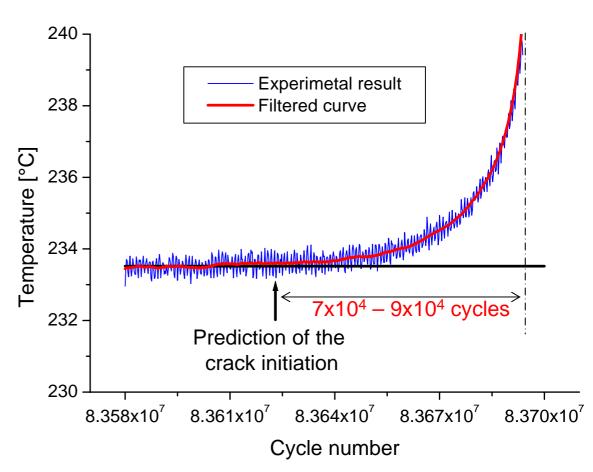

- The thermal problem is solve numerically with a finite element method:
 - Linear finite element
 - The integration scheme is implicit
 - The mesh is more refined in the zone close to the plan of crack propagation: 100 elements on the specimen radius
- Parameters of the simulation:
 - Initial crack radius: a₀=8µm
 - Eccentricity: e=0.8
 - Characteristic time: t_c =4.4s

Identification of the dissipated power P_0


Minimization of least squares method :

Minimization of least squares of the difference between the maximum temperature measured in experiments and the calculated temperature:

 $P_0 = 2.9 \text{Wm}^{-1}$


Numerical simulation associated to the experimental configuration

t = 3.68s; a = 0.270mm

Experimental determination of the crack initiation

- Experimental crack initiation criterion: increase of 0.07∘C of the filtered temperature (a≈0.02mm)
- Crack propagation: between 7x10⁴ and 9x10⁴ cycles
 - ⇒ very small part of the life of the specimen

Conclusion

- Experimental approach : temperature measurement during ultrasonic fatigue test
- Modeling of the thermal effect associated to the crack propagation :
 - Crack propagation
 - Dissipated power during crack growth
 - Modeling of the thermal problem and numerical solution

Results

- Good correlation with the experiment
- Good estimation of the crack propagation duration