

Preprocessing of temperature measurement by IR techniques using POD truncated basis for heat source estimation

7-11 July 2014

The 12th International Conference on Quantitative Infrared Thermography, Bordeaux

N. Ranc¹, A. Blanche^{2,4}, D. Ryckelynck³, A. Chrysochoos²

¹ PIMM (UMR CNRS 8006), Arts et Métiers ParisTech, 75013 Paris, France ²LMGC (UMR CNRS 5508), Université Montpellier 2, 34095 Montpellier, France ³ Centre des matériaux (UMR CNRS 7633), Mines ParisTech, 91003, France ⁴ UMET (UMR CNRS 8207), Université Lille 1, 59655 Villeneuve d'Ascq, France

Context of the study

Introduction

Context of the study

Problematic of heat source identification

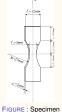
Objectives of the study

Application of POD preprocessing

Benchmark test

Comparative analysis

Conclusion


Deformation of solids:

Context of the study

- temperature variation.
- heat sources: dissipation, thermomechanical coupling

Example: very high cycle fatigue loading

Objectives:

To understand and model the thermomechanical behavior and the fatique damage evolution

Objective of the study

Heat source identification from temperature field measurement by IR thermography in order to understand the thermomechanical behavior of the material

Problematic of heat source identification

Introduction

Context of the study

Problematic of heat source identification

Objectives of the study

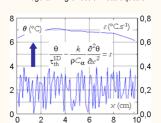
Application of POD preprocessing

Benchmark test

Comparative analysis

Conclusion

Heat equation


$$\rho C_{\alpha} \left(\frac{\partial \vartheta}{\partial t} + \frac{\vartheta}{\tau_{1}^{1D}(x)} \right) - k \left(\frac{S'}{S} \frac{\partial \vartheta}{\partial x} + \frac{\partial^{2} \vartheta}{\partial x^{2}} \right) = d_{1}(x, t) + s_{coupling}(x, t) = s(x, t), \quad (1)$$

where

- \blacksquare s(x,t) longitudinal distribution of the mean heat source per cross section
- \blacksquare S, and S' section and its derivative
- $= \tau_{th}^{1D}(x)$ being a time constant characterizing the heat losses

Difficulties

- Temperature are noisy
- Regularizing effect of heat equation

Method to reduce the noise

- Gaussian convolutive filtering : noise on the heat source, boundary effects
- Spectral method: projection onto eigenfunctions of the laplacian operator
- Local least squares fitting : local approximation of the temperature field

Objectives of the study

Introduction

Context of the study

Problematic of heat source identification

Objectives of the study

Application of POD preprocessing

Benchmark test

Comparative analysis

Conclusion

Objectives of this study

- to show that the projection on a reduced basis generated by proper orthogonal decomposition (POD) of thermal data improves the signal to noise ratio
- to underline the advantages of the use of a POD projection preprocessing before the classical methods: finite difference (DF), spectral solutions (SPS), local least square analytical approximation (LSQ)

Outline

Introduction

Context of the study

Problematic of heat source identification

Objectives of the study

Application of POD preprocessing

Benchmark test

Comparative analysis

- Introduction
 - Context of the study
 - Problematic of heat source identification
 - Objectives of the study
- 2 Application of POD preprocessing to thermal data
- 3 Benchmark test
- 4 Comparative analysis
- 5 Conclusion

Outline

Introduction

Application of POD preprocessing

Application of POD preprocessing to thermal data
 POD Preprocessing method

POD Preprocessing method Example of POD basis ■ Example of POD basis construction

construction

Benchmark test

Benchmark test

Comparative analysis

Comparative analysis

Conclusion

POD Preprocessing method

The reduced basis representation of the temperature field

Introduction

$$\vartheta(x,t) = \sum_{k=1}^{N} a_k(t)\varphi_k(x), \tag{2}$$

Application of POD preprocessing

where $(\varphi_k)_{k=1,\ldots,N}$ are the proper orthogonal modes (POMs) of the POD reduced basis.

POD basis construction

method

Example of POD basis construction

The reduced basis is related to thermal field obtained from solutions of chosen heat diffusion problem $(\vartheta^{(r)})_{r-1,\ldots,M}$:

$$\varphi_{k} = \underset{\psi}{\operatorname{arg max}} \frac{\sum_{r=1}^{M} \int_{0}^{t_{f}} \left(\int_{\Omega} \vartheta^{(r)}(x, t) \psi(x) d\Omega \right)^{2} dt}{\int_{\Omega} \psi^{2}(x) d\Omega}, \tag{3}$$

-- ----

where Ω is the spatial domain and $[0, t_f]$ is the time interval.

Comparative analysis

Conclusion

Benchmark test

Eigenvalue related to the POM φ_k

$$\sigma_k^2 = \frac{\sum_{r=1}^M \int_0^{t_f} \left(\int_{\Omega} \vartheta^{(r)}(x, t) \varphi_k(x) \, d\Omega \right)^2 \, dt}{\int_{\Omega} \varphi_k^2(x) \, d\Omega} \tag{4}$$

 σ_k^2 represents the energy of mode φ_k

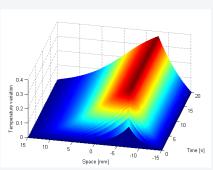
Example of POD basis construction

Diffusion problem

■ Choice of putative heat source $(s^{(r)})_{r=1,...M}$: time constant point sources

■ Temperature field calculation $\vartheta^{(r)}(x,t)$

Application of POD preprocessing


Introduction

POD Preprocessing method

Example of POD basis construction

Benchmark test

Comparative analysis

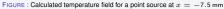


FIGURE: Specimen geometry.

$$\rho C_{\alpha} \left(\frac{\partial \vartheta^{(r)}}{\partial t} + \frac{\vartheta^{(r)}}{\tau_{th}^{1D}(x)} \right) - k \left(\frac{S'}{S} \frac{\partial \vartheta^{(r)}}{\partial x} + \frac{\partial^2 \vartheta^{(r)}}{\partial x^2} \right) = s^{(r)}(x), \quad \vartheta^{(r)}(\pm \frac{L}{2}) = 0. \quad (5)$$

Example of POD basis construction

Introduction

Application of POD preprocessing

POD Preprocessing method

Example of POD basis construction

Benchmark test

Comparative analysis

Conclusion

First eigenvalues and proper orthogonal modes

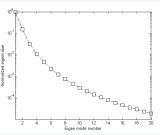


FIGURE: Normalized distribution of eigenvalues

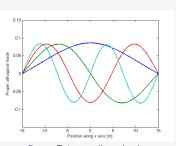


FIGURE: First proper orthogonal modes

- the eigenvalues represents the level of energy of each mode and decrease quickly;
- \blacksquare It is thus possible to truncated this POD base without affecting the total energy of the system $(N_m\approx 10$ in our case).

Outline

Introduction

1 Introduction

Application of POD preprocessing

Application of POD preprocessing to thermal data

Benchmark test

- Reference heat source and associated temperature
- Projection on a truncated POD basis
- Heat source calculation
- Error analysis
- 4 Comparative analysis
- 5 Conclusion

Benchmark test

Reference heat source and associated temperature

Projection on a truncated POD basis

Heat source calculation Error analysis

Comparative analysis

Reference heat source and associated temperature

A benchmark test with a particular heat source is chosen:

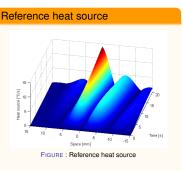
- Introduction

 to test the robustness of the POD method;
 - to show advantages of the use of POD preprocessing before classical identification method.

Application of POD preprocessing

Benchmark test

Reference heat source and associated temperature


Projection on a truncated POD basis

Heat source calculation

Error analysis

Comparative analysis

Conclusion

highly heterogeneous field;

slowly time evolution.

Associated noisy temperature

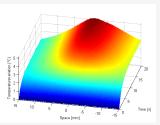


FIGURE: Associated noisy temperature

- dissymmetric Dirichlet boundary conditions:
- Gaussian white noise with a three standard deviation of 50 mK.

Projection on a truncated POD basis

The temperature field is filtered by projection on a truncated POD basis:

Introduction

Application of POD preprocessing

Benchmark test

Reference heat source and associated temperature

Projection on a truncated POD basis

Heat source calculation

Error analysis

Comparative

analysis

Conclusion

Boundary conditions modification

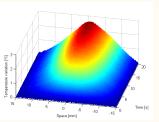


FIGURE: Boundary conditions modification

- superimposing the solution of the thermal problem with a null source and boundary conditions equal to the experimental value
- zero temperature variation on the boundary conditions

Temperature field after projection

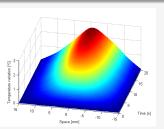


FIGURE: Temperature field after projection

projection on the truncated POD basis of 10 modes

Heat source calculation

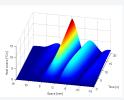
Introduction

Application of POD preprocessing

Benchmark test

Reference heat source and associated temperature

Projection on a truncated POD basis


Heat source calculation

Error analysis

Comparative analysis

Conclusion

Heat source calculation by the finite difference method :

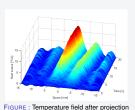
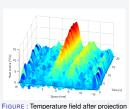



FIGURE . Temperature field after projection

- projection on the truncated POD basis of 10 modes
- projection on the truncated POD basis of 15 modes

Remarks:

- POD projection and finite difference method allow to correctly capture inhomogeneities and time evolution;
- The increase of the number of mode improve the maximum heat source but increase the noise particularly in the region where the heat sources are small;
- the error on the estimate of the maximum heat source is about 0.83 °C/s

Error analysis

Introduction

Application of POD preprocessing

Benchmark test

Reference heat source and associated temperature

Projection on a truncated POD basis

Heat source calculation

Error analysis

Comparative analysis

Conclusion

Error on the heat source estimate:

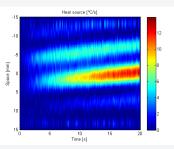


FIGURE : Identifed heat source

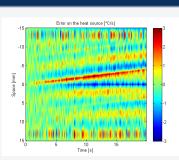


FIGURE : Difference between the estimate and the reference heat sources.

- increase of the error in the zone of high gradient
- increase the noise in the region where the heat source remain small.

Outline

Introduction

1 Introduction

Application of POD preprocessing

Application of POD preprocessing to thermal data

3 Benchmark test

Benchmark test

4 Comparative analysis

Comparative analysis

Conclusion

Comparative analysis

method CPLI time mean std parameter $(x \ 10^{-3} \circ C/s)$ $(x\ 10^{-3} \circ C/s)$ (s) SPS -11 726 $N_{ef} = 10$ 37.95 LSQ 21 429 $N_x = 15 N_t = 15$ 5.37 POD+FD 750 $N_m = 10$ 0.52 + 0.33POD+SPS -12 734 $N_m = 15 N_{ef} = 10$ 0.61+11.64 POD+LSQ -9 383 $N_m = 15 N_x = 10 N_t = 10$ 0.61 + 5.34

TABLE: Heat source assessments using noisy thermal data.

Application of POD preprocessing

Introduction

Benchmark test

Comparative analysis

Conclusion

Comparative analysis of the use of POD method before heat source assesment:

FD method:

- Without POD preprocessing, the FD method gives too noisy estimates of heat sources because the 2nd order derivative of noisy data considerably amplifies the noise;
- heat sources can be now calculated with the FD method after POD Preprocessing.

SPS method

- the quality of the results is similar with and without POD preprocessing
- this method is really time consuming; POD preprocessing allows a more rapid convergence of the projections for the same number of eigenfunctions.

LSQ method

- POD preprocessing slightly improves the standard deviation.
- The main advantage of this technique is that it allows the reduction of the approximation zone.

Outline

Introduction

Application of POD preprocessing

Application of POD preprocessing to thermal data

3 Benchmark test

4 Comparative a

5 Conclusion

Comparative analysis

Benchmark test

Conclusion

Introduction

Application of POD preprocessing

Benchmark test

Comparative analysis

Conclusion

- main objective of the presentation: that the use of a truncated POD base of thermal data improves significantly the heat source assessments;
- a 1D benchmark.
- the general advantages of POD preprocessing :
 - the POM are computed once the diffusion problem is defined. They are computed once and for all;
 - the number of POM(s) to be considered in the preprocessing depends on the noise characteristic but generally remains small;
 - the CPU time necessary to project the thermal data are almost negligible compared with those necessary to compute the heat sources;
 - the POD preprocessing allows to use the FD method with noisy thermal data to calculate heat sources;
 - noise reduction by POD enables us to consider a greater number of eigenfunctions for the spectral method and to reduce the fitting zone in the least-square method in order to limit the crushing of thermal gradient for example.

Thanks for your attention Any questions?

Nicolas Ranc Associate Professor

Arts & Métiers ParisTech - Centre de Paris Laboratoire PIMM 151 boulevard de l'Hopital, 75013 Paris, France nicolas.ranc@ensam.eu

