

FAST determination of fatigue properties of MATerials beyond one billion cycles

Procédés et Ingénierie en N. Ranc, V. Favier, O. Castelnau, V. Michel, T. Ors Mécanique et Matériaux

The **FastMat** project is funded by European Research Council (ERC) under the European Union's [Horizon 2020 research and innovation programme] (grant agreement No 725142)

Fatigue of materials

- 80% of fractures in transport and energy production industries are attributed to fatigue
- Increase of the lifespan: very high number of cycles
- Fatigue design: SN curve (Standards ISO12107, ASTM-E739...)
- Limitations:
 - More than one month to draw a SN curve until 10⁷ cycles; **3 years** for one billion cycles (10Hz)
 - Difficulties to explore the fatigue behavior beyond 10⁷ (VHCF domain)

Objectives of FastMat project

- Technological challenges
 - Testing time reduction
 - Exploring the VHCF domain
- Focus on metallic materials
- Develop a new method for fatigue design:

Short interrupted fatigue tests

+ Self heating measurement

Main scientific difficulties

Self Heating *Intrinsic*

dissipation

(Dislocations movement)

Fatigue damage

Stored Energy
(Irreversibility of dislocations movement)

Methodology adopted in the Fast Mat

Experimental study

Temperature (thermography)

Intrinsic Dissipation D_{int} (heat equation)

Stress, strain (XRD, gages)

Mechanical work

 $(W = \int_{cycle} \sigma \dot{\varepsilon} dt)$

NOVELTY: time resolved XRD using intense X ray sources

- Improve the time resolution (time shift: 10ns):
 - Continuous method (1μs)
 - Flash method (0.1ns)

TEAM & facilities: 1PhD, 1 Engineer, 1 post doc, SOLEIL synchrotron

Modelling at the dislocations scale

DDD simulations

Thermal signature

Fatigue mechanisms

NOVELTY

- Cyclic irreversibility: cross slip
- Stored energy and dissipation output
- Time integration (1000 cycles)

TEAM & facilities: joint PhD, TRIDIS DDD code

Stored energy

Energy balance

Help to interpret the experimental results

le cnam

HESAM UNIVERSITÉ

pimm-contact@ensam.eu
http://pimm.ensam.eu/

